

Formation HFSS Modélisation simplifiée d'une common-mode choke

Alexandre Boyer

Mai 2020

Laboratoire conventionné avec l'Université Fédérale de Toulouse Midi-Pyrénées

- > Prise en main de l'environnement ANSYS Electronics Desktop (V16) HFSS
- > Import d'un fichier géométrique (.step) et enrichissement du modèle
- > Simulation de paramètres S 4 ports d'une common-mode choke
- Export des paramètres S pour une étude sous de ANSYS Electronics Desktop (Nexxim Circuit Simulator)
- > Créer un composant 3D intégrable dans de futurs modèles

- > Common-mode choke TDK ACT45B
- > Fichier step disponible

>

> Ne donne que le modèle du corps du boitier et les pads

La nature des matériaux n'est pas précisée.

Création du projet / design HFSS

a

- > File > New → création d'un nouveau projet
- > Renommer en ProjetCMC

AAS

- Insertion d'un design HFSS, qu'on nommera CMC_ACT45B.
- > File > Save as \rightarrow sauvegarde du projet
- Réglage du type de solution (Tools > Options > General Options)
- > Réglage des unités (en mm) : Modeler > Units

i 🤣 🌽 🚯 😤		** ** 😻 🖕	
Project Manager		. 7 ×	
Project1			
🗄 🚞 Definitio	胞	Paste	Ctrl+V
		Rename	F2
	×	Delete Project Permanently from Disk	Delete
		Insert	>

roject Manager		Ψ×			
Microstrip_P	piec	1		-	
🗄 🦲 Definitions	E	Paste	Ctrl+V		
		Rename	F2		
	×	Delete Project Permanently from Disk	Delete		
		Insert	>		Insert HFSS Design
		Close		*2	Insert HFSS 3D Layout Design
	Q	Save	Ctrl+S		Insert HFSS-IE Design
		Save As	765.07	8	Insert Q3D Extractor Design
Volume Documents					Insert 2D Extractor Design
operties		Analyze All		*4	Insert Circuit Design
Name Value	l.	Project Variables		t≟r‡	Insert Circuit Netlist
	1	Project Datasets		*	Insert Filter Design
	_				Insert Documentation File

Import du fichier STEP

- > Modeler > Import
- > Sélectionner act45b.step. Non centré sur l'origine du repère \rightarrow on va le déplacer.

- > Modeler > Movement mode : sléectionner le type de déplacement adéquat.
- Edit > Arrange > Move : on décale le modèle géométrique le long de l'axe Z pour qu'il soit « posé » sur le plan Z = 0. Le centrer dans le plan XY.

Import du fichier STEP

> Vérification du modèle : Validate

> Résultat :

AAS

- Erreurs « Boundaries and Excitation », « Analysis Setup » à ignorer car pas encore définies.
- Problème sur le modèle 3D !

Message Manager 2020 No material is assigned for "ACT45B g u b Ntypsize 1". (10:23:17 mai 22, 2020) No material is assigned for "ACT45B_q_u_b_Ntypsize_2". (10:23:17 mai 22, 2020) 2020 Nomaterial is assigned for "ACT45B g u b Ntypsize 3". (10:23:17 mai 22, 2020) At least one material assignment should have solve inside set! (10:23:17 mai 22, 2020) 🗱 Boundary Setup: An excitation must be defined in order to solve driven problems. (10:23:17 mai 22, 2020) Solution Setup: No solution setups have been created. (10:22:17 mai 22, 2020). 🔎 🔯 Objects "ACT45BDR_R_A_u__b_Ntypsize" and "ACT45B_q_u_b_Ntypsize" intersect. (10:23:22 mai 22, 2020) Objects "ACT45BDR_R_A_u_b_Ntypsize" and "ACT45B_q_u_b_Ntypsize_1" intersect. (10:23:22 mai 22, 2020) 2020) Objects "ACT45BDR_R_A_u_b_Ntypsize" and "ACT45B_q_u_b_Ntypsize_2" intersect. (10:23:22 mai 22, 20:20) 2020) Objects "ACT45BDR_R_A_u__b_Ntypsize" and "ACT45B_q_u__b_Ntypsize_3" intersect. (10:23:22 mai 22, 20:20) No material is assigned for "ACT45BDR_R_A_u_b_Ntypsize". (10:23:22 mai 22, 2020) No material is assigned for "ACT45B g u b Ntypsize". (10:23:22 mai 22, 2020) 2020 No material is assigned for "ACT45B q u b Ntypsize 1". (10:23:22 mai 22, 2020) No material is assigned for "ACT45B_q_u_b_Ntypsize_2". (10:23:22 mai 22, 2020) 2020 No material is assigned for "ACT45B g u b Ntypsize 3". (10:23:22 mai 22, 2020) At least one material assignment should have solve inside set! (10:23:22 mai 22, 2020) Boundary Setup: An excitation must be defined in order to solve driven problems. (10:23:22 mai 22, 2020) 23 Solution Setup: No solution setups have been created. (10:23:22 mai 22, 2020)

Problème : intersection entre les objets pads et le corps du composant → introduira un problème de maillage

Import du fichier STEP

- > On copie-colle les 4 objets pads pour les faire apparaitre comme de nouveaux objets indépendants.
- > Vérification du modèle : Validate

Attribution des propriétés des matériaux

> Edit > Select > Object

AAS

CNRS

- On sélectionne les objets correspondant aux 4 pads
- > Dans le volet Properties :

Name	Value	Unit	Eval	^
Vame				
Material				
Solve Inside				
Orientation	Global			ĺ.
Model	~			
				Y
<			>	

On attribue du cuivre comme matériau et on change la couleur

> On peut aussi changer le nom des 4 objets pads, pour mieux les identifier dans la suite

Attribution des propriétés des matériaux

> Edit > Select > Object

AAS

- On sélectionne l'objet correspondant au corps de la choke
- > Dans le volet Properties : on attribue le matériau ferrite et on change la couleur.

operties of the Material				View/Edit Material for-
Name	Туре	Value	Units	Active Design
Relative Permittivity	Simple	12		C. This Deadurat
Relative Permeability	Simple	1000		
Bulk Conductivity	Simple	0.01	siemens/m	C All Products
Dielectric Loss Tangent	Simple	0		
Magnetic Loss Tangent	Simple	0		View/Edit Modifier for-
Magnetic Saturation	Simple	0	tesla	
Lande G Factor	Simple	2		
Delta H	Simple	0	A_per_meter	
Measured Frequency	Simple	9.4e+009	Hz	
Mass Density	Simple	4600	kg/m^3	

Cancel

0K

Le modèle fréquentiel exact n'étant pas connu, on l'ignore.

- > Le modèle de bobinage interne n'est pas donné par le constructeur. Il ne peut être extrait que par reverse engineering puis construit à l'aide des outils de construction géométrique de HFSS.
- > Processus long !
- > On va proposer un modèle simple : 2 boucles de 1 mm de large, séparées de 0.5 mm, formées par des fils de 0.05 mm de rayon.
- > On créera autant que possible et au fur et à mesure de la construction du modèle des variables pour le rendre paramétrique.
- > Ca devrait vaguement ressembler à ça :

- > On créé la boucle Loop1, connecté entre pad2 et pad3 (la plus basse).
- > On créé un arc de cercle Draw Center Point Arc

Properties: ProjectCMC - CMS_ACT45B - Modeler

Name	Value	Unit	Evaluated Value	Description
Segment Type	Center Point Arc			
Start Point	Rloop*sqrt(2)/2 ,Rloop*sqrt(2)/2 ,Hloop		0.70710678118655mm , 0.70710	
Center Point	0mm ,0mm ,Hloop		Omm, Omm, 0.5mm	
Angle	-270	deg	-270deg	
Plane	XY			
Number of Seg	0		0	

Objet Loop1 (pour l'instant, aucun matériau attribué, et aucun rayon défini)

X

- > On créé les fils de connexion entre Loop1 et Pad2
- > Draw Line

Name	Value	Unit	Evaluated Value	
Segment Type	Line			
Point1	1.5264692756608 ,1.2282852729146 ,0.05	mm	1.5264692756608mm , 1.228285	
Point2	Rloop*sqrt(2)/2 ,1.2282852729146mm ,0.05mm		0.70710678118655mm , 1.22828	

- > On relie Loop1 et Loop1_Pad2_Fil1
- > Draw Line

Hold 'X', 'Y', or 'Z' key to constrain relative movement.	Objet Loop1_Pad2_Fil2
Ctrl-Click to change reference position	2 (mm)
1.3	5 (mm)

- On fait la même chose entre Loop1 et Pad3. Le plus simple est de créer un copie des 2 fils de > connexion avec une symétrie par rapport au plan YZ. <u>7</u> V
- Sélection des 2 fils de connexion. Edit > Duplicate > Mirror Duplicate >
- Sélectionner Along X axis comme mode de mouvement. Deux points sont à sélectionner pour > définir le plan de symétrie : le point d'ancrage et la direction de la normale du plan.
- S'assurer que le fil touche mais ne pénètre pas dans Pad3. Vérifier la validité du modèle **Validate**. >

LAAS-CNRS

- > On créé la boucle Loop2, connecté entre pad1 et pad4 (la plus haute).
- On sélectionne Loop1. Edit > Duplicate > Along Line
 Along Z) (se mettre en mode de mouvement
- > Les séparer d'une distance SepLoop = 0.5 mm.
- > Edit > Arrange > Rotate : rotation autour de l'axe Z d'un angle de 180°

- On créé les 2 fils de connexion vers les pads 1 et 4. On réutilise les mêmes méthodes que précédemment.
- > Le résultat final doit ressembler à cela :

LAAS

Problèmes : >

_AAS CNRS

LAAS-CNRS

- Ces fils ne sont pas encore des objets physiques. Il faut leur donner une section pour pouvoir les mailler en volume.
- Si le modeleur 3D les interprète comme des fils indépendants (non reliés), il risque de créer une intersection d'objets, générant une erreur de maillage.
- On commence par unir les différents fils : >
 - Sélectionner les objets Loop1 et les 4 fils de connexion vers Pad2 et Pad3.
 - Modeler > Boolean > Unit
 - Le nouvel objet est renommé automatiquement Loop1. On peut le renommer Bobinage1.
 - Même chose avec les objets Loop2 et les 4 fils de connexion vers Pad1 et Pad4.

- On donne aux objets Bobinage1 et Bobinage2 des sections circulaire de rayon Rwire = 0.05 mm.
- Dans la liste des objets, sélectionnez tous les objets CreatePolyline.
- > Dans le volet Properties :

_AAS

CNRS

- Type : sélectionner Circle pour définir une section circulaire
- Width/Diameter : 2*Rloop

Il n'y a plus qu'à attribuer le matériau aux 2 objets bobinage \rightarrow Cooper.

Création des ports et excitation

- > On va placer 4 ports au niveau des 4 pads, qui seront directement connectés à un plan de masse parfait, situé à 0.1 mm sous la common-mode choke.
- > **Draw Plane** : largeur = 2*Wgnd avec Wgnd = 20 mm et situé à Hgnd = 0.1 mm sous la CMC.
- > On nomme cet objet GndPlane.

AAS

CNRS

> HFSS > Boundaries > Assign > Perfect E

Création des ports et excitation

> On commence par créer le port 1, associé à Pad1.

_AAS CNRS

- Le plus simple : sélection d'un edge, Modeler > Edge > Create object from edge puis Draw > Sweep > Along vector, mais bug avec la version Ansys 16.2
- > Alternative : on créé 4 rectangles entre chaque pad et le plan de masse.

Création des ports et excitation

> On sélectionne ces 4 rectangles

- > HFSS > Excitation > Assign > Lumped Port
- > Chosir GndPlane comme référence.

Création airbox

_AAS

- > On créé l'objet airbox, dont les bords sont délimités par le plan de masse.
- > On fixe comme hauteur de cet objet Hairbox = 2*Wgnd.
- > On sélectionne les faces de l'objet airbox (sauf celui en contact avec le plan de masse) et on leur attribue la condition aux limites Radiation.

d Attribute				
Name	Value	Unit	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys	Global			
Position	-Wgnd ,-Wgnd ,-Hgnd		-20mm , -20mm , -0.1mm	
XSize	2*Wgnd		40mm	
YSize	2*Wgnd		40mm	
ZSize	Hairbox		40mm	

Configuration de l'analyse

- > HFSS > Analysis Setup > Add Solution Setup
- > Fréquence d'analyse : 2 GHz

LAAS

Setup Marie.	Setup1	
	Enabled	Solve Ports Only
Solution Frequency:	: 2	GHz 🔻
Maximum Numb	er of Passes:	10
Maximum Numb	eer of Passes: elta S	0.02

Auvanceu Expressi	
Initial Mesh Options	
Do Lambda Refinement	
Lambda Target: 0.3333	I✓ Use Default Value
Use Free Space Lambda	
Adaptive Options	
Maximum Refinement Per Pass:	30 %
Maximum Refinement:	1000000
Minimum Number of Passes:	1
Minimum Converged Passes:	1
Solution Options	
Order of Basis Functions:	First Order
Direct Solver	
C Iterative Solver	
Relative Residual:	1e-006
O Domain Decomposition	
Relative Residual:	0.0001

Configuration de l'analyse

> HFSS > Analysis Setup > Add Frequency Sweep

weep	Name:	Sweep	1			Finabled
weep	Type:	Interpo	plating	•		
Fre	quency Sw Distrib	eeps [7] oution	l points defined Start] End	1	
1	Log Scale		0.01GHz	2GHz	Samples	30
					2.	

Vérification du modèle et analyse

> Vérification du modèle : Validate

_AAS

CNRS

> Lancement de la simulation : Analyze

I.

ile Convergence Matrix Data M	esh Statistics					
Number of Passes Completed 3 Maximum 10 Minimum 1	0.10 -					
Max Mag. Delta S Target 0.02 Current 0.017372	elta S					
/iew: C Table	lax Mag. D	-				
CONVERGED	2					-
-Consecutive Passes Target 1 Current 1						
Default Settings Save Defaults Clear Defaults	0.01 -	2	0			-
			Total nu	mber of ele	ements: 35	807

Stoppé au bout de 1h17...

Design Variation: m' Hloop='0.5mm' Hloop1='0.5mm' Rloop='1mm' Rwire='0.05mm' SepLoop='0.5mm' Wgnd='20mm'

Profile Convergence Matrix Data Mesh Statistics

Task	Real Time	CPU Time	Memory	Information
Frequency: 1.840429				Full Solution # 117
Simulation Setup	00:00:02	00:00:02	70.7 M	Disk = 0 KBytes
Matrix Assembly	00:00:02	00:00:02	150 M	Disk = 0 KBytes, 24507 tetrahedra , 1: 19 triangles , 2: 17
Solver DCS1	00:00:32	00:00:32	1.25 G	Disk = 0 KBytes, matrix size 172798 , matrix bandwidth 2
Field Recovery	00:00:00	00:00:00	1.25 G	Disk = 0 KBytes, 4 excitations
				Interpolation Error: S Matrix error 1.51462 %
Frequency: 0.515625				Full Solution # 118
Simulation Setup	00:00:02	00:00:02	70.7 M	Disk = 0 KBytes
Matrix Assembly	00:00:03	00:00:02	150 M	Disk = 0 KBytes, 24507 tetrahedra , 1: 19 triangles , 2: 17
Solution Process				Elapsed time : 01:22:01 , Hfss ComEngine Memory : 47.8
Total	01:17:23	01:16:41		Time: 05/22/2020 15:38:57, Status: Aborted
			5	

	Num Tets	Min edge le	Max edge le	RMS edge le	Min tet vol	Max tet vol	Mean tet v	Std De
Airbox	4118	0.0160655	28.2129	4.79345	3.41916e	1288.31	15.5321	85.307
Bobinage1_1	5214	0.0186857	0.409681	0.12595	1.11431e	0.0002027	1.11886e	1.4808
Bobinage2	5399	0.0211	0.409681	0.126141	1.87863e	0.0001867	1.1929e-0	1.4722
CorpsFerrite	20389	0.020048	0.75	0.342395	1.2393e-0	0.0227514	0.0018537	0.0024
Pad1	171	0.181107	1.06171	0.459155	4.36071e	0.0104416	0.0012087	0.0012
Pad2	168	0.0504163	0.835527	0.485071	8.74647e	0.0080519	0.0012303	0.0013
Pad3	175	0.0963098	1.27285	0.449368	2.08518e	0.0137893	0.0011811	0.0015
Pad4	173	0.179518	0.836426	0.494819	7.08022e	0.0060667	0.0011948	0.0012

...| |

Résultat de simulation paramètres S

> Simulation paramètres S11, S12, S13 et S14

Résultat de simulation paramètres S

> Simulation paramètres S11, S14, S22 et S23

- On exporte les paramètres S dans un fichier .s4p (Network Data Explorer)
- On créé un circuit contenant le modèle de la CMC via un Nport sous Nexxim Circuit Simulator.
- > Extraction des inductances de chaque bobinage :

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

AAS

Pad4_T1 Pad3_T1

Pad1 T

Pad2

Port

-AAS CNRS

AAS

On exporte les paramètres S dans un fichier .s4p (Network Data

On créé un circuit contenant le modèle de la CMC via un Nport

sous Nexxim Circuit Simulator. Extraction de l'inductance de mode commun : > XY Plot 1 Circuit1 100.00 Curve Info mag(Z(Port1,Port1)) Name Х Y LinearFrequency m1 0.0100 0.0976 10.00 Lcm = 1.553 μH mag(Z(Port1,Port1)) [kOhm] 1.00 0.10 0.01 0.10 0.01 1.00 10.00 F [GHz]

AAS

Explorer)

>

>

Pad4 T1

Pad3 T1

Pad1 T

Pad2

Port1

Création d'un composant 3D

- > Sélectionner tous les objets formant le connecteur.
- > Draw > 3D Component Library > Create 3D Component ou clic droit > Create 3D Component
- > Modifier les paramètres si nécessaire et l'enregistrer n'importe où.

10020000000	CIVIS_ACT	'45B		
Owner:				
Email:	adminaboy	ver@w2000.laas.fr		
Company:	0			
Version:	1.0			
Date:	12:00:45	mai 25, 2020		
Materia				
Modèle si	mplifié comm	on-mode choke Ti	DK ACT45B	^
Notes: Modèle si	mplifié comm y image in 3D	on-mode choke Ti) modeler window	DK ACT45B	nponent is used.
Modèle si	mplifié comm y image in 3D :	on-mode choke Ti) modeler window	DK ACT45B	nponent is used. Browse
Modèle si Modèle si Display Image File	mplifié comm y image in 3D : Model	on-mode choke Ti) modeler window Boundaries	DK ACT45B whenever this cor Excitations	nponent is used. Browse Mesh Operations
Modèle si Modèle si Display Image File	y image in 3D	on-mode choke Ti) modeler window Boundaries Parameters	DK ACT45B whenever this cor Excitations	mponent is used. Browse Mesh Operations

AAS

Création d'un composant 3D

Création d'un composant 3D

- > Le composant est placé à un endroit par défaut (origine du repère)
- > Les excitations du composant 3D sont automatiquement incluses dans le modèle HFSS.
- Le composant peut ensuite être déplacé, tourné, dupliqué à l'aide des commandes Move, Rotate, Duplicate.

_AAS