BE électronique automobile 5° année ESPE

INSTITUT NATIONAL -
‘ DES SCIENCES

APPLIQUEES

TOULOUSE '

Introduction to software tools
for Automotive Electronics
lab

B

Sy ——

http://www.alexandre-boyer.fr

Alexandre Boyer 5¢ année ESPE
Patrick Tounsi November 2023

http://www.alexandre-boyer.fr/

BE électronique automobile

5% année ESPE

| - Getting started S32 Design Studio for Power Architecture IDE (version 2.1) 4
1. Overview of S32DS for POWEr arChiteCtUre..........cooviiiiiiiinisieiee e 4
2. Define YOUr WOTKSPACE.......ccviiiieieie et 4
3. Create a project from SCratChcccoviiiiieie e 5
4. Import an existing Project in & WOIKSPACEccovieriiriririecieee e 7
5. Remove a project from the WOrkSPace..........cccccueiveiiiiiiieese e 7
6. Compile and BUIld YOUT PrOJECT.cciiiiiiiiicieee e 8
7. Programming the MCU ..o 8
8. Debugging your appliCatIONccoiiiiiiiiiiiee e 10
9. Installing and USING SDKcooiiiiiiiece e 11

Il - Presentation of Matlab/Simulink for motor control simulationErreur ! Signet non

défini.

1. Creating model in SIMUIINK ... Erreur ! Signet non défini.
2. Creation of variablesccccoceiveiiiiciiec e Erreur ! Signet non défini.
3. PlaCiNg SCOPESoovveiiiiieiiieitesie sttt Erreur ! Signet non défini.
4. Configuration of simulationccccccevvveviiiciecceee e, Erreur ! Signet non défini.
5. Launching SIMUIAtioNcccooiiiiiiiniiccec e Erreur ! Signet non défini.
6. The main common liDraries.........c.cccoveviveieiieieeie e Erreur ! Signet non défini.
a. Commonly used BIOCKSccccoviiiiiiiieecc Erreur ! Signet non défini.
b CONLINUOUS ...ttt Erreur ! Signet non défini.
C. DISCIEIE ..o s Erreur ! Signet non défini.
d. Math Operationcccoevveveiee i Erreur ! Signet non défini.
e. Ports and SUDSYSIEM........cccoceiiiiiiiiieceee Erreur ! Signet non défini.
f. Signal attributescccoooveiieieiiccece e Erreur ! Signet non défini.
g SIgNal FOULING ... Erreur ! Signet non défini.
h SINKS....ticecee e Erreur ! Signet non défini.
L. SOUICES. ..ttt ettt st ene s Erreur ! Signet non défini.
J. User-defined functioncccooevviiiiiiiic i Erreur ! Signet non défini.

11 - Presentation Of FREEMASTERccooiiiieece e 12
Lo OVEIVIBW .ttt b bbbttt b e et e et beebe et e b e ene et e e 12
2. Adding FREEMASTER communication driver to S32DS Project........cc.ccoevvvvvveeenns 12

a. The main macros and functions of FREEMASTER APlccccooeiiiiiiiiiiiiieen, 12
b. Configuration of FREEMASTER driver in C code applicationc.ccccvvveneen. 14
3. Configuring FREEMASTER application as an 0SCilloSCOPE..........ccccvevveivveiieiiieeiinns 14
4. Saving captured data by Freemaster running as an 0SCilloSCOpPec.cccoeevvverviiennnn, 19
5. Debug FREEMASTERccoiiiiiieieiie ettt 20

IV - Presentation of Automotive Math and Motor Control Library for MPC574xP............ 20
R O 1 =T VT TP 20
2. Types provided by AMMOCLIB........cccoociiiiiiiiee e 22
3. Brief presentation of the fUNCLIONScceiiiieiii i 23

a. Math Function library (MLIB) ..o 23
b. General Functions library (GFLIB)ccccoiiviiiiiiiecec e 24
c. General Digital Filters library (GDFLIB)cccoociiiiiiieieeieie e 24

BE électronique automobile

d. General Motor Control li
4. Using in S32DS environment

5% année ESPE

brary (GMCLIB).......ccoeiieeie e 25

.. 25
a. Setting the IMpPIEMENtatioNccoiviie e 25

b. Calling mathematical FUNCHIONccoiiiiiii e 25

5. Using in Matlab/Simulink environment...............cccocevvennene Erreur ! Signet non défini.
V= RETEIBICES ...ttt sttt sttt b e be et esne e sbe et e e neenbeebeaneenre s 26

BE électronique automobile 5° année ESPE

This document aims at providing basic support for the different software tools used to achieve
the motor application project in Automotive Electronics lab:
= S32 Design Studio (S32DS) IDE: the integrated development environment provided
by NXP for Power Architecture MCU
= FREEMASTER: NXP proposes this tool to communicate with embedded applications
and monitor/visualize in real-time internal variables of embedded applications

In order to facilitate the development, simulation and debugging of motor control applications,
NXP also provides Automotive Math and Motor Control Library (AMMCLIB) for NXP
MPC574xP. This library is compatible with both S32DS and Matlab/Simulink as a toolbox. It
contains basic and complex mathematical functions dedicated to motor control applications
(basic mathematical operation, digital filtering, Park transform, SVM, etc...)

The purpose of this document is to help you to start development with these tools rapidly and
underlines the functionality offered by these tools in order to help you to choose the more
appropriate design flow.

This document is intended for motor control application development on MPC5744P
microcontroller, mounted on the DEVKIT-MPC5744P development Kit.

This document is not exhaustive. More information about the different tools, toolbox and
library can be found in the references provided in the part Links.

| - Getting started S32 Design Studio for Power
Architecture IDE (version 2.1)

1. Overview of S32DS for Power architecture

S32DS for Power architecture is the integrated development
environment provided by NXP for Power Architecture microcontroller 53 2

(MCU) and automotive applications. The S32 Design Studio is based on
the Eclipse open development platform and integrates the Eclipse IDE,

GNU Compiler Collection (GCC), GNU Debugger (GDB).

It also provides in-situ debugger through several interfaces: P&E
Multilink/Cyclone/OpenSDA and supports two software design kits (SDK) that will be used
in this lab: FREEMASTER serial communication drivers and Automotive Math and Motor
Control Libraries (AMMCLIB).

In this part, the main steps to launch S32DS, create a new project, compile, build, debug and

flash your application in the MCU will be described. Here, the MCU MPC5744P is
considered.

2. Define your Workspace

As S32DS is based on Eclipse environment, all the projects must be defined according to a
common workspace. All the new projects will be created in the associated folder. When
S32DS is launched, the following window is opened to select the Workspace.

BE électronique automobile 5° année ESPE

Eclipse Launcher X

Select a directory as workspace

532 Design Studio for Power Architecture uses the workspace directory to store its preferences and development artifacts,

Workspace: | extenseignements_2020_21\BE_electronique_auto mobile\Workspace_SB 205 - Browse...

[] Use this as the default and do not ask again

¥ Recent Workspaces

Figure 1 — Selection of the Workspace

Tips: manage the different projects within a workspace directly from S32DS IDE, not from
Windows Explorer !

3. Create a project from scratch

Launch the S32 Design Studio for Power Architecture. A dialog window opens in order to
select your workspace. All the S32 project saved in this workspace will be imported.

The window shown in Figure 2 opens. If some existing projects are in the workspace, they
will appear in the Project Explorer. The organization of the window is configurable with the
menu Window.

Workspace 532D - C/C++ - PMSM_TGN002_cde_FOC_debug/include/Cmd_moteur.h - 532 Design Studio for Power Architecture - x
|File Edit Source Refactor Mavigate Search Project Run ProcessorExpert Window Help | M enu ba r

BB -E-G- #-0-&- &7~ ey

(ot [Boica. | = Crma_moteurh 52 Perspective Switch = = 1
& -l Cmd a 5 -
les I - (/ e B y 1 SELE I
Iy ADC_CTU_Triggered o O T e T d-fl—oh0| bar C/C+or debUg view SWLIBS_Typedefs.h ~
| O cdeFoc_v 150 | o "ivpedeFepe defs.h
e FOC_IV_150us | include "typedefs.h Typedes)
1 LED switch_1s PLL 1 CMD_MOTEUR_H_
13 PMSM_TGNODZ_cde_FOC #ifndef CMD_MOTEUR H_ VITESSE_MAX
I (5 PMSM_TGN002_cde FOC debug I ddefine CMD_MOTEUR H_ VITESSE_DEFAULT

> 1

4 Binaries UCC_MAX_mY
UCC_MAXY
UPHASE_MAX_mV/
UPHASE_MAX_V
DUTY_CYCLE MAX

. |
& IncludeP rocjs%s:t I|

|
I 5 R FreeMaster mp I que : les tensions sont exprimées en mv, les vitesses
1 @queﬁpiorer | g | Les angles sont exprimés en microradian.

(& include 1
1 |
|
|

ion, ds ramper
n parti
n RPM/m

#define VITESSE MAX 1888 //cn RPM
@ sre | #define VITESSE_DEFAULT 388 //en RP! IMES_MAX
(& Debug | #define UCC_MAX_mV 18600 //2n PILMICRORAD
Bf README.bt II #define UCC_MAX_V 18 //zn V TWO_PI_MICRORAD
TJ PMSM_TGNODZ_cde_Uf #define UPHASE_MAX mV 9000 //en V PI_FLT
|> 5 PMSM_TGNOD2_cde Uf_moteur i | #define UPHASE MAX V 9 //2 TWO_PLFLT

#define DUTY_CYCLE MAX 1000 /

T Read Angle Vitesse PGAAT |I #define IMES_MAX 21 //courant

THREE_PI_FLT
| 3 Test_digial fiter

(R R EEEEEEE EEEEEEEEEEEEEEEEEE XN

ul #define PI_MICRORAD 3141598 //pi FOUR_PLFLT
|&‘ T Tect N ANINAN 1 #define TWO_PI_MICRORAD 6283188 /, FIVE_PI_FLT
L) I g s Py i i e v SIX_PLFLT
< > .
lgan hboard 52 Ea=N | MINUS_PI_FLT
121 Prablems 2 v =5 PAIRE_POLE
~ Project Creation T setlilp o e, e, e e e e e e e e e e e e e e e e === = = - KP_CORR.I
R 5 e b e e e e e e e =
[53205 Application Project I} Description Resource Path Location Tpe | KI_CORR.I
| = 3205 Library Project KP_CORR_V
Jjy & Warnings (2 items) KL CORRV
| ~ Build/Debug Com ma r]'&s % unused variable 'DQ_Out' [-Wunused-variable] PMSM_TGND02_cde_FOC_deb... e | T SLOW LOOP M5
1 HH; - M:“Il % variable 'SVMSector set but not used [-Wunused-but-set-variable] PMSM_TGN002_cde_FOC_deb.. o | T FAST LOOP. Us
(Al @ Gett
| & Quir 1 Conso | e 1 T_SLOW_LOOP_S
[] T_FAST LOOP_S
| 1 ACCELERATION_RAMPE_
e - - MOPE ECT NORM Y
< > < > < >

Figure 2 - Main window of S32DS IDE

To open an existing project, write click on its name in the project explorer and select Open
Project. You can open source files (.c or .h) and modify them in the Code editor part. Several
commands available either in the menu bar, tool bar or Commands window launch the
compilation, building, debugging and flashing process. They will be presented later.

In order to create a project from scratch for MPC5744P, follow the procedure described below:

BE électronique automobile 5° année ESPE

= In the menu bar, click on File > New > S32DS Application project. The window
below opens to setting the target MCU and the project options

= Enter the name of the project in Project Name and its location (by default, in your
workspace). In the EIf S32DS project window, select the target microcontroller:
Family MPC574XP > MPC5744P Click on Next button.

e 5205 i S D e

[croateasa2 Dasign Studio Project New 532D Project for MPC5744P
c 205 Project cores and par

New $3205 Project 0

| EN 53205 project | Library project

* [Holio

Debugger PE Micro GDB server

oa> | Cancel 2 [<hack Foch || Cancel

Figure 3 - Creating a new S32DS project from scratch

= Select the project options (language, import Software Design Kits (SDK), type of
debugger, ...). The default configurations are sufficient for this project, except if you
need to import SDK (e.g. AMMCLIB or FREEMASTER). This point will be
addressed in 5).

= Click on Finish to generate the project

S32DS generates the project with all the necessary libraries, start-up, debugger and linker
codes. The project folder is visible in the Project Explorer. By default, the Perspective Switch

is in C/C++ mode %2 for code development. The target memory is written just after the name
of the project:

= debug: the executable code will be downloaded in the Flash memory of the MCU

= debug RAM: the executable code will be downloaded in the SRAM of the MCU

Tips: select Flash to store your program in non-volatile memory. Programming Flash is a
little longer than programming RAM. During debug stage, it can be more convenient to
download your code in RAM.

The project structure is organized as follows:

= Project_Settings: this folder contains all the required files to compile the project, link
the files and the start-up code.
= Include: it contains all the header files .h of the project.
= src: it contains all the C/C++ source file of the project. By default, the following files
are added after the creation of a new project:
o main.c: your main code
o intc_SW_mode_isr_vectors_ MPC5744P.c: this file defines the interrupt vector
table
o MPC57xx__Interrupt_Init.c, vector.c and intc_sw_handlers.s: these files define
all the function requires for interrupt management

BE électronique automobile 5° année ESPE

= Debug: this folder contains all the executable source files that will be downloaded into
Flash memory. The .elf file is the executable file and the .map file provides the
memory location of the code.

= Debug_RAM: this folder contains all the executable source files that will be
downloaded into SRAM. The .elf file is the executable file and the .map file provides
the memory location of the code.

A default main.c file is opened in the code editor. You can write your own code in this file.
Existing files can be copied and pasted from one project to another directly by right clicking
on them and selecting Copy or Paste. You can create new source C file by clicking on src

folder in your own project and clicking on File > New > Source File or on the icon '€ . Type
the name of the new source file (give .c as extension). Do not forget to create also the
associated header file (.h) that must be included in the folder include. Click on include folder

in your own project and clicking on File > New > Header File or on the icon ' .

4. Import an existing project in a workspace

To open an existing project, it is necessary to import it in the workspace. Click on the menu
File > Open Projects from system file. The following window opens to select the project to
import. Click on the button Directory to select the folder of the project to be imported and
click OK. If the project is identified as a valid project, click on the button Finish. The
imported project must be visible in the Project Explorer.

B Import Projects from File System or Archive O X

Import Projects from File System or Archive

This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE.

Import source:

v | [Directory.. || Archive..

type filter text Select All

Folder Import as Deselect All

0 of 0 selected
[Hide already open projects

Detect and configure project natures

Working Sets

[] Add project to working sets New...

Figure 4 — Import an existing project in the workspace

5. Remove a project from the workspace

It is not advised to remove a project directly from Windows Explorer, but from S32IDE.
Right click on the project to remove and select Delete # in the pop-up window or click on
the menu Edit > Delete. A window is opened to verify the confirmation of the removal
process. Two modes are possible:
= [f the option “Delete project contents on disk (cannot be undone)” is not selected, the
project is removed from the workspace, but it is not permanently deleted. It can be
imported again if necessary.

BE électronique automobile 5° année ESPE

= If the option “Delete project contents on disk (cannot be undone)” is selected, the
project is removed from the workspace and permanently deleted. Be careful if you
select this option !

6. Compile and build your project

Once your source code files (.h and .c files) are written, they must be compiled and the project
has to be built before downloading it to the MCU for debugging purpose.

Click on the button Build 4 or click in the menu Project > Build. Prior to this step, it is
necessary to define the target memory (Flash or RAM), It can be defined by clicking on the
small arrow in the right of the button Build:
BRI EFEF W
~ 1Debug l
2 Debug_RAM

3 Release

By default, Debug option is selected so the program is saved in Flash memory for in-situ
debug purpose.

Tips: in case of problems during build and link steps, it is recommended to click on the
button Clean # .

7. Programming the MCU

The first step consists in configuring the debug settings. Here, only the selection of the
executable files (either those for Flash or those for SRAM) and the programming of the MCU
is configured. For the other parameters, the default values can be kept.

Click on the menu Run > Debug configurations or on the small arrow in the right of the

button Debug - to open the debug configuration panel. The window shown in Figure 5
opens. On the left part of the window, the different opened and built source code projects are
shown. Select the project the project that you want to download to the MCU. If the executable
files have to be downloaded into Flash, select the project with ' Debug' suffix. Otherwise,
select the project with '_Debug_RAM' suffix. In right part of the window, in the page Main,
verify that the correct executable file .elf is selected.

BE électronique automobile 5° année ESPE

+ Debug Conﬁguratiorls""- _ — - “ _ u

Create, manage, and run configurations

S X| B - Name: PGA411_ReadAngle_Debug
E] Main §'§‘§ Debugger| = Startup E Source | [C] Commen ﬁOSAwarene;s
[&] C/C++ Application o Project:
[E] C/C++ Remote Application
[£] GDB Hardware Debugging PGAALL ReadAngle
4 [&]| GDB PEMicro Interface Debugging E
E Essai_Freemaster_Debug Specify the number of additional ohject files you wish to program: 0 |Generate Object File Fields

E Essai_Freemaster_Debug_RAM
[©] PGA411 ReadAngle Debug

[] PGA411_ReadAngle_Debug_RAM
[©] SPLMPC5744P_Debug -
[] SPIMPC5744P_Debug RAM

C/C++ Application:
= Launch Group EE

Debug/PGA411_ReadAngle.clf

Variables... I [Search Proje:t.‘.] [Browse...]
Build (if required) before launching
Build Cenfiguration: |Debug ']
(") Enable auto build (") Disable auto build
@) Use workspace settings Configure Workspace Settings...
. R Revert Apply
Filter matched 11 of 13 items
'(?3' [Debug] [Close

Figure 5 - Debug configuration panel (Run > Debug configurations)

Then, go to the page Debugger. The list Interface contains all the supported programming
interfaces, as shown below. In this lab, you will use development board DEVKIT_MPC5744P.
An on-board programming interface, called Open-Standard Serial and Debug Adapter
(OpenSDA) is mounted on the board, offering an economical programming interface for the
user. You will use this interface primarily. Thus select OpenSDA Embedded Debug- USB
Port in the list. If the board is connected on a USB port of your computer, information about
the port number and the device mounted on the development kit should appear in the fields
Port, Device Name and Core.

A programming interface alternative is the USB Multilink. This external programming
interface is available in this lab.

PEMicro Interface Settings

Interface: lOpenSDA Embedded Debug - USE Port VI Compatible Hardware
USB Multilink, USE Multilink FX, Embedded OSBDM/OSITAG - USB Port
Cyclone - Serial Port
Cyclone - USB Port
Cyclone - Ethernet Port
SpecifyIp Tracelink - USE Port
Tracelink - Ethernet Port

Additional Opt. pen5DA Embedded Debug - USB Port
Advanced Options

Figure 6 - Selection of the programming interface (Run > Debug configurations)

Port:

Device Mame:

Finally, you can click on the button Debug to start the downloading of the code into MCU
memory.

You are not forced to return to the Debug configurations to start the programming of the
MCU. Once it has been configuring, you can click on the menu Run > Debug (F11) or on the

button ¢ ~

BE électronique automobile 5° année ESPE

8. Debugging your application

Once you click on the button Debug, the downloading of the executable files into the MCU
starts. Ensure that the MCU board is connected to your computer through a programming
interface and correctly powered. The process can last several tens of seconds. As explained
before, programming the Flash memory is longer than the programming of the RAM.

During the downloading process, the Perspective Switch changes from C/C++ to Debug mode

¥ and window shown in Figure 7 appears.

projets_S32 - Debug - ADC_CTU Triggered/src/mainc = $32 Design Studio rM
M ESoU M R gl PR FTR, D) MDY, Ep = = —— - l
=l | @Biw|e o ® sz o i Lits - O~ Qi F i - F o
e
|| i ¥ = O = Varibles 12
Name Type
9= counter volatile int 0
57 061002 d8
- C:\NXP\S32DS_Power_v2017.R1' om.pemicro.debs dbjtz -1.7.2.201709281658\win32\pegdb . . .
K.
B roeneniniers Variable/Register content display
[main.c 52 = O | = Outline 2 =8
MyGPIO (void); - ER BRI
v ert_Result_LED(uintl6_t Result); # DeacTimes =
! 1 # Triggerdnput
=k # CTUCptPrescaler
CTUnitCptr
Source code ¥ CluMace
CTUTrigDelay
1N,
n
Aotk 1)
D & main int o
3 Dashboard 3 @ Y= 08 B Console X] |&aeE@ E-8-=0
sebug g
< Project Creation < Buid/Debug’ ~ Settings . ADC_CTU Triggered Debug [GDB PEMicro Interface Debugging] CANXP\S32DS, Power w2017 it - 17.2.201709281658\win32\pege
Initializing RAM from 340606060 to $ABOSFFFF o
Mew 532D5 Project & Build (Al -
o« Clean (Al @ Reset script (C:\NXP\S32DS_Power_v2e17.R1\eclipse\plu gdi\PRE\532e200_mpc
Debug
% Debug vpCs7esn Device detected Console (messages,
] -

»

memory content)

Figure 7 - In-situ debugging interface

The debugging process is controlled by the commands provided in the Tool bar (Figure 8).
The Run button starts the execution of the embedded program. The execution can be paused
by clicking on the button Pause. The execution can be performed step-by-step by clicking on
the step buttons.

|00 @M D

Disable all Stop Step into Step return
breakpoints Step over
Run
Pause

Figure 8 - Debug toolbar

Breakpoints can be inserted in the source code by double clicking on the source code line
where you want to insert the breakpoint. You can also right click and select Add Breakpoint.
The breakpoint is removed by double clicking on it or right clicking and select sur Toggle
Breakpoint. It can be deactivated by clicking on Disable breakpoint and reactivated with
Enable Breakpoint. Each time the execution pauses (due to a breakpoint or a click on button
Pause), the memory content is refreshed.

At the end of in-situ debug operation, you have to stop the debugger by clicking on the button
Stop. Then, click on the perspective switch to return in C/C++ mode.

10

BE électronique automobile 5° année ESPE

Tips : do not forget to stop the debugger before returning in C/C++ Perspective. Otherwise,
the debugger will continue to run. The next time you will try to reprogram the MCU, an error
message will be displayed to warn you that a in-situ debug is still on-going.

9. Installing and using SDK

In this lab, you will certainly use two software design kits (SDK) provided by NXP:
= FREEMASTER communication drivers
= Automotive Math and Motor Control Libraries (AMMCLIB)

Both SDK are free but they are not installed in S32DS by default. Here, we explain how to
install SDK and use the provided source codes and drivers. The downloading links and the
contents of these SDK will be detailed in part 111 and V of this document.

SDK have to be selected during the project creation, in order to import all the library files.

When you create a new project with S32DS, as explained in part 1.2, click on the button L]
in the field SDK of the window New S32DS Project. The window shown in Figure 9 opens.
All the SDK installed in your PC are listed (in this example, Freemaster and AMMCLIB are
installed). Select the SDK that you want to use and click OK. In the window New S32DS
Project, click on Finish. A new project is automatically generated. In the Project Explorer,
you can verity that source files associated to the SDK have been added.

New S32D5 Project ==
New $32DS Project for MPC5744P -
Quick Acc
Select required cores and parameters for them.
=0 B0
ProjectName ooqai 5pK b E %S
‘ ; =
ore 7
b2 -
Longuoge [- u D
— uc
SDKs J o
.
Library EWL | o pe
) 1 Select SDK i
10 Support [ja1i0
Debugger | pE Micro GDB server
Name Version Type SDK description Edit/Show info...
FreeMaster_MPC57:x 200 Contributed SDK FreeMASTER Serial Communicat tion Driv... T
MPCS74xP_AMMCLIEs32ds 119 Contributed DK Automotive Math and Moter Control Li... —
Show enly latest versions
@

Figure 9 - Selecting SDK in a S32DS project

11

BE électronique automobile 5° année ESPE

Il - Presentation of FREEMASTER

1. Overview

FREEMASTER is a PC-based development tool serving as a real-time monitor, visualization
tool, and graphical control panel of embedded applications implemented on NXP
microcontroller, as described in Figure 10. The FREEMASTER application repetitively sends
a request to obtain the current values of chosen variables used in the embedded application
and display them on a graphical interface. Communication between FREEMASTER
application is supported by serial communication interface (SCI) such as UART, CAN bus or
JTAG. In this document, we will only consider communication through UART (based on LIN
interface). In the MPC5744P_DEVKIT, communication will pass transit through the USB
port of the OpenSDA interface.

sci |
FreeMASTER Communication channel) Free Embedded
application . application
~ —— can | MASTER
Serial
- » driver
Vo N ITAG |
| | J
" 4)

Figure 10 - Freemaster principle

However, the communication requires FREEMASTER serial driver, that must be used by the
embedded application to ensure protocol functions and handle peripherals. This part aims at:
= describing the main functions of FREEMASTER serial driver to enable
FREEMASTER communication either in S32DS or Simulink project
= presenting the interface of FREEMASTER application

FREEMASTER application and serial driver can be downloaded from NXP website
(www.nxp.com) without any charge. Refer to part VI for installation of FREEMASTER
application and serial drivers.

2. Adding FREEMASTER communication driver to S32DS
project

a. The main macros and functions of FREEMASTER API

All the details about the functions and macros of FREEMASTER driver API can be found in
[FRUG].

The configuration of FREEMASTER is done by freemaster_cfg.h file, through several
macros. Here, only the most important are described here:

= Interrupt mode selection: assert to '1' only one the three macros below. If long
interrupt mode is used, the function FMSTR_Isr() handles FreeMASTER protocol
decoding and execution. As it can be a long process, give it a low interrupt priority
level. In short interrupt mode (the most versatile mode), the raw serial communication
is handled by the FMSTR_Isr() interrupt service routine, while the protocol decoding
and execution is handled in the FMSTR_Poll() routine. In polling mode, Both the

12

BE électronique automobile 5° année ESPE

serial (SCI/CAN) communication and the FreeMASTER protocol execution are done
in the FMSTR_Poll() routine.

#define FMSTR LONG INTR O /* complete message processing in interrupt */
#define FMSTR _SHORT INTR 1 /* only SCI FIFO - queuing done in interrupt */
#define FMSTR POLL DRIVEN 0 /* no interrupt needed, polling only */

= Selection of communication interface: FMSTR_DISABLE must be set to '0" (default
value) to enable FREEMASTER functionalities. FREEMASTER communication is
based either on SCI (LINFlexD_0 or 1), CAN or BDM communication interface. To
select one of these interfaces, set the corresponding macros to '1'.

#define FMSTR DISABLE 0 /* To disable all FreeMASTER functionalities */
#define FMSTR USE_SCI 1 /* To select SCI communication interface */
#define FMSTR USE FLEXCAN 0 /* To select FlexCAN communication interface */
#define FMSTR USE_PDBDM 0 /* To select Packet Driven BDM communication

interface (optional) */

= Definition of communication interface memory address for SCI and CAN interface:
refer to memory address map of the microcontroller and write the starting memory
address corresponding to communication interface. Any errors in memory address will

result in unpredictable application error.
#define FMSTR SCI BASE OxFFE90000UL /* LINFlexl base on MPC574xP */
#define FMSTR CAN BASE OxFFECO000UL /* FlexCANO base on MPC574xP */

For the other macros, the default values are sufficient for the application developed in the
Automotive Electronics lab.

FREEMASTER API contains numerous functions. However, in order to initialize and launch
communication with FREEMASTER application, only three functions are required, which
have to be called by the embedded C code:
= FMSTR_init(): it initializes internal variables of the FreeMASTER driver and enables
the communication interface (SCI, JTAG or CAN). It does not change the
configuration of the selected communication module. The user must initialize the
communication module (LINFlex as UART, JTAG or CAN) before the FMSTR_Init()
function is called.
= FMSTR_Poll(): in poll-driven or short interrupt modes, this function handles the
protocol decoding and execution. In the poll-driven mode, this function also handles
the interface communication with the PC. Typically, FMSTR_Poll() is called during
the 'idle’ time in the main application loop.
= FMSTR_Isr(): it is the interface to the interrupt service routine of the FreeMASTER
serial driver. In long or short interrupt modes, this function must be set as the interrupt
vector calling address when a transmission or reception is performed by the
communication module (LIN, CAN or JTAG). On platforms where interface
processing is split into multiple interrupts, this function should be set as a vector for
each such interrupt.

Besides, two additional functions can be used if the recorder functionality is used:

= FMSTR_Recorder(): it takes one sample of the variables being recorded using the
FreeMASTER recorder. If the recorder is not active at the moment when
FMSTR_Recorder is called, the function returns immediately. When the recorder is
initialized and active, the values of the variables being recorded are copied to the
recorder buffer and the trigger condition is evaluated.

= FMSTR_TriggerRec(): it forces the recorder trigger condition to happen, which causes
the recorder to be automatically de-activated after post-trigger samples are sampled.

13

BE électronique automobile 5° année ESPE

This function can be used in the application when it needs to have the trigger
occurrence under its control. This function is optional. The recorder can also be
triggered by the PC tool or when the selected variable exceeds a threshold value.

It is not necessary to indicate which variables will be transferred from the MCU to the
FREEMASTER PC-application. All the global variables can be transferred to FREEMASTER
application, if these variables have been selected to be watched.

b. Configuration of FREEMASTER driver in C code
application

FREEMASTER serial drivers are provided as a SDK. In order to use FREEMASTER
communication in a new S32DS project, FREEMASTER SDK has to be imported first. Refer
to part 1.7 for this action.

The header file freemaster_cfg.h is automatically added in the folder include of S32DS
project. The macros should be updated following the explanation given in part I11.2.a. Include
the header file freemaster.h in all the source code file where a FREEMASTER API function is
used.

The four main steps are:
1. Configure all the necessary peripherals required for the FREEMASTER
communication (clock gating, interrupt controller, initialization of the UART (SCI or
CAN) and the used external pins). Ensure that the UART, its pins and its timing
parameters are correctly set.
2. Initialize FREEMASTER by calling FMSTR_Init() just once at the code start,
typically after the start-up code, at the beginning of the main function.
Call FMSTR_Poll(void) periodically in your code. A typical place is in the main loop.
4. FMSTR_Isr() must be assigned to the used UART interrupt vectors (e.g. interrupt
vectors associated to transmission and reception of the used UART). Configure also
the interrupt priority level associated to these interrupt requests. Use a low priority
level to ensure that FREEMASTER will not affect your application. In S32DS project,
the interrupt vectors are defined in the file intc. SW_mode_isr_vectors MPC5744P.c.

w

3. Configuring FREEMASTER application as an
oscilloscope

Connect the microcontroller to a USB port of your PC through. Ensure that the
microcontroller has been flashed and is powered correctly.

F
Click on FREEMASTER 2.0 icon % to launch the FREEMASTER application. The
following window opens. By default, no project is loaded. Here, the different steps to start
communication with an embedded program in a microcontroller and to visualize internal
variables will be explained.

14

BE électronique automobile 5° année ESPE

& Project - FreeMASTER - m} X
File Edit View Explorer Project Tools Help
= ﬂ Rl D Tahoma
7] New Project| A
F -

| |
P

Welcome to FreeMASTER

Whats New in Version 2. O'-'
n of the mut\mp ortant cha nd i vements implemented in this 2pplica
on) |:t n Wizard, Active Contel t dg ph Fthdfomt rget memery, impro dGUI nd

. Visit FreeMASTER home page
Visit the application home page at vwwnnxp.com.
. Get MCU Communication Drivers

The latest version of FreeMASTER drivers for UART, LPUART, FlexCAN, msCAN and other interfaces is
Jable for dougload ot tha loade tab ot the official doeplogd Thad)

v 1 X

Value Unit Period

Bl application Commands| Belvariable Stimulus

Ready Mot connected

Figure 11 - FREEMASTER application - main window

In the menu bar, click on Project > Options. The window shown below appears. Only two
operations are required to configure the communication. First, you have to set the parameters
of the communication port. In the tab Comm., select the communication port on which the
microcontroller board is connected. If you do not know it, in Window start menu, go to
Control Panel > Device manager > Ports (COM & LPT) and find the number of the Com
port. Then, set the correct baud rate. Secondly, the executable file (.elf) embedded in the
microcontroller must be provided to FREEMASTER to make the link with variables read
continuously. In the tab MAP Files, select the .elf file in the field Default symbol file.

Tips: ensure that the .elf file corresponds to the actual code embedded in the microcontroller.
Otherwise, communication may fail.

- S .
Options @ Options Iﬁ
Comm 1 MAP Files I Pack Dir] HTML Pages] Dema Mode] Views & Bars] Comm MAF Files] Pack Dlr] HTML Pages] Dema Mode] Views & Bars }
ST Defautt symbol file: | ..
RS232: Pot: [cOM22 BN Frfe | =] e
Speed: [115200 | Timeouts... List of al valid N
ew..
. symbol files:
" Plugin Module | J
[~ Save settings to project file W Save settings to registry, use it as default. NE‘E ;Lhe file S;I?dg‘j £ t;a list will be used as default symbol file
when the project is opene
Communication state on startup and on project load On Load
I " QOpen port at startup I r
("i Do not open port at startup] ¥ Synchronize variables each time the symbal file loads
Store port state on ext. spply it on startup W List emors (vaniables using undefined symbols)
[Store state to project file. apply upon its load Advanced... (+ Aways { Except after project load
0K Annuler | | | oK Annuler | | |

Figure 12 - FREEMASTER application - configuration of the communication port (on the left)
and selection of the executable file (on the right)

Click on the button OK. A new project was created, visible in the Project tree. Click in the

menu File > Save Project or on icon = (0 save it. The extension of the file is .pmp. The
communication port configuration and visualized variables are saved. The next time you will
connect to the microcontroller, you will import the .pmp file directly.

In order to launch the communication with the microcontroller, click on the button Start/stop
communication @. The status of the communication is displayed in the message bar, in the

15

BE électronique automobile 5° année ESPE

bottom part of the main window. If the communication is active, the COM port, and the baud
rate must be written. Otherwise, the message "Not connected™ is written and an error message
shown below appears. Refer to the following part to solve this issue.

i FreeMaster S — T 'd—&J

Could not open the communication port (Error 0x80004005: Erreur non
! . spécifiée) !

|

Once the .elf file has been loaded, the variables to be visualized can be selected. To select
variables, click on the menu Project > Variables. A window opens with all the list of
selected variables Click on the button New to add a new variable to observe. The following
window appears. In the list Type, select the type of the variable. In the list Address, select the
variable to be visualized. Give it an arbitrary name in Variable name. Set the Sampling
period. If the visualization must be refreshed as fast as possible, select Fastest. Select also the
format of the visualized variable (decimal, hexadecimal, binary...) in the list Show as.

4. Set the sampling 5. Set the displayed format
period of the observed variable
3. Giveanametothe varisbie
observed variable Definion | Moding |
Varable name: Sampling period: ‘laslesl ﬂ Show as: ‘P.E-_L J
. Variable [x40000630] Bit fields Show
1. Internalva r|ab|e’/> Address: ,W When the value is received. belival Ljmin [} max
selection Te: [omrgport =] Sce: i =] | | shite: [0 btsroht,and. | | oy =
Fomrat: ~ [IEEE floating point mask with: [no mask 1 [™ Exponential
2. Select type a nd Real type transformation Text enumeration (after transform)
size of the variable Hone 9| Telied ™ Enumeration enabled I~
[” Use Moving Averages'fitter |
=
History time: m cE defautt: ‘unkn-:""n ¥ Show number
OK Annuler ‘ ‘

Figure 13 - Selection of a new variable to be visualized with FREEMASTER

Click on OK. The new variable is added in the table VVariable Watch, as shown in Figure 14.
When the communication is active, they could be updated in real-time. Repeat the operation
for all the variables that you want to visualize. To delete one variable, select the variables and
click on the button Delete. To modify it, click on the button Edit.

16

BE électronique automobile 5° année ESPE

B " Variables List

Filter: |

Available variables Me
er d .|

err_Iq Clore. ..
Uabc_Commande. fitarg1

Uabc_Commande. fitarg2 Edit...
Uabc_Commande. fitarg3

Udg_meas. fitArgl Delete

Udg_meas. fitArg2

velocity_rotor_meca
Generate...

PR

Help

Close

e

Figure 14 - List of variables to be observed

FREEMASTER application proposes also to visualize time domain evolution of variables in a
2D graph, called Scope, similarly to an oscilloscope. It requires two operations:

= first, the creation of a Block (of variables)

= then, the creation of one or several Scopes within a block.

In Project tree, right click on the project name and select Create Subblock to create a new
Block and edit its properties. The following window opens. In the tab Main, enter the name of
the Block. In the tab Watch, all the selected variables in the previous step are in the left part
of the window initially (in the column Available Variables). Select the variables to be
observed and click on the button Add ->. The selected variables jump to the right column,
Watched variables. Inversely, to remove variables from a block, select them in the right

column and click on the button € Remove. Finally click OK.
Project Block Properties *

Main Watch lﬁpp.commands]

Awailable varables: Watched variables:
er_ld New...
Uabc_Commande fit Arg3 er_lg
Uabe_Commande fitArg1 Clone...
Add —> velocity_rotar_meca
- Udg_meas fitArg 1 it

Ll

- Udg_meas fit Arg2
<= Remove | —

E =

Fitter:

ok | Amnuer ‘ Ride ‘

Figure 15 — Selection of the variables observed in a Block

To create a scope in a block, right-click on the Block in the Project tree and click on Create
scope in the pop-up menu. In the tab Main, define the name of the Scope in the field Name.

17

BE électronique automobile 5° année ESPE

Specify the sampling period in the field Period. Define the number of points visualized in a
scope in Buffer. You can also modify general graphical properties of the Scope.

Scope Properties Iél
Main lsemp |
Name: cope
Description URL:l
Scope global properties Legend location Grid
Period: |250ms w | (0 = maximal speed) (¢ Top (" Hottom W Horizortal
" Left { Right ¥ Vertical
Buffer: i
er. (1000 points per subset ¥ Legend visble
Graph type Graph setup
{* Time graph ¥-axis label: |TIITIE
£ XY graph ¥-axis units: |seconds +| v Append units name to the label
~
[¥-axis width: | 10 [+ Auto-scale when lower than width
oK | o | aide |

Figure 16 - Properties of a scope

Then, select the variables that you want to visualize. Only watched variables can be displayed
in a scope. Click on the tab Setup. The window shown below is displayed. Graph vars lists
all the variables to be plotte.d In the list below, select the watched variables to be plotted. The
variable appears in Graph Vars list. Fill the checkbox to enable or disable the plot of a
variable.

On the right, the list Assignment to Y blocks is visible. A block is a subgraph. You can plot
as many variables in a block. If you want to plot two variables in two different blocks, select
the variables, the block and click on the button Assign vars to block. You can modify general
properties of curves and blocks in this screen.

Scope Properties >
Main Setup]
Graph vars: ﬂ ﬂ Assignment to Y blocks: Y-block Left Axis
T BLoCKC g wine 5 9B o
Udg_meas fitArg2 1] . <
) El v aut
] Uabc_Commande fitArg1] Etggﬁ% g ma = aue
[] Uabc_Commands ftArg2 O BLOCK4 1 | syle: [lne v
[] Uabc_Commande fltArg3] BLOCK: 1
Jer_ld]
Jemr_lg = Y-hlock Right Axis
0— Join | Spi
plit
J J Right axis vars: |0
in: |-10 3 =
Udg_meas ftArg1 - J Color | Assign vars to block | mn
Left axis label: ||A=cis style: Iﬁ

Right axis label: ||'.i'-.'f.is

OK | Annuier | Aide |

Figure 17 - Selection of plotted variables in a Scope

Click on OK. The graph appears. If the communication is active, the selected watched
variables are plotted directly. Their evolution is plotted in real-time, as shown in the figure
below.

18

BE électronique automobile 5° année ESPE

3 Project_Freemaster - FreeMASTER - X
File Edit View Scope Project Toals Help
21 [] NE Tahoma -lls -
" N Uabc_Commande. ftarg1 Uabc_Commande. ftarg2 Uabe_Commande. ftarg3
e [i
154
104
05
05
1,04
15
24 '
0, 1,0 1 20 2, 30 3 40 4 0
Time [s&c]
osciloscope
Value Unit Period -
-4,06304e-007 it 0 1
0.000164755 it 0
de.fitarg 0.0302143 it 0
fithrg -0,228607 it 0 -
fitArg. 0.198393 it 0
v 2 29.5119 it 0
Udq_meas. fithrg1 -4.06304-007 it 0
N = .. |Uda measfitara2 00709641 unit 0 hd
Plapplication commands| BlVariable stimulus ¢ | D
Ready Not connected Scope Running

Figure 18 - Observation of the time-domain evolution of three variables in a Scope

Do not forget to save the project before closing FREEMASTER application.

4. Saving captured data by Freemaster running as an
oscilloscope

All the captured variables of a block can be saved in a text file. A Scope view has to be
defined. To configure the file where the data will be saved, click on the menu Scope > Data
Capture Setup (Figure 19). Ensure that the Scope window was opened, otherwise the menu
Scope is not available. Define the directory in the Oscilloscope part of the window. Check the
box “Close the file (open new) when data capture is paused” to stop data acquisition when
Freemaster is paused. Click OK.

Capture Setup ot

Recorder

Directory: | zrs\adminaboyer\AppDataiLocal {Temp\pcmaster rec .

{* File names wil be generated automaticaly in the form rec00001. txt ete..

(™ Just one file name is used (always overwritten): | recdata. txt

Oscilloscope

Directory: | =rs\adminaboyer \AppData'Local Temppembsteriosc .
[¥ Close the file (open new) when data capture is paused
File names wil be generated automaticaly in the form osc00001. bt

QK | Cancel |

Figure 19 — Capture setup

If not done yet, Launch Freemaster acquisition by clicking on Start/stop communication @D

In the menu Scope, click on Toggle Data Capture On/Off or on the button " to start the
recording of all the variables of the block in the text file. To stop the recording, click once

19

BE électronique automobile 5° année ESPE

again on Toggle Data Capture On/Off or on the button "H. The saved data are available In
the text file defined previously.

5. Debug FREEMASTER

Wrong configurations will result in loss of communications between the MCU board and

FREEMASTER PC application, shown by this error message :
FreeMaster [ih,l

Could not open the communication port (Error 0x80004005: Erreur non
spécifiée) !

Freemaster is usually not able to communicate with the board in the five following situations:

» FREEMASTER drivers have not been called in the embedded application (or
incorrectly called)

= the associated UART has not been correctly configured (baud rate, 1/0 pads not
configured, ...)

= FMSTR_Isr() function has not been linked to interrupts vectors associated to the
UART (for TX and RX)

= port and baud rate specified in FREEMASTER application are wrong

= the communication port between your PC and the microcontroller board is already
used by another application (e.g. S32DS in-situ debugger).

= the embedded application was compiled and built, but it results in wrong operation
(e.g. crash due to a critical interrupt request).

If the first four reasons have been verified, then you can conclude that FREEMASTER is
correctly configured, but your embedded application is not operational.

Il - Presentation of Automotive Math and Motor
Control Library for MPC574xP

This Matlab/Simulink toolbox is compatible only from R2014.a release. In this document, the
version 2.2 for MPC574xP MCU is considered. More information about the mathematical
functions provided by this toolbox can be found in [AMMC]. Model-Based Design Toolbox
can be downloaded here: http://www.nxp.com/support/developer-resources/run-time-
software/automotive-software-and-tools/model-based-design-toolbox:MC _TOOLBOX

1. Overview

The NXP’s Automotive Math and Motor Control Library (AMMCLIB) provides a list of
mathematical functions dedicated to motor control, which supports different number
representations (fixed or floating point). This library is supported by S32DS compiler so it

20

http://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/model-based-design-toolbox:MC_TOOLBOX
http://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/model-based-design-toolbox:MC_TOOLBOX

BE électronique automobile 5° année ESPE

appears as a SDK for S32DS. Moreover, models compatible with Simulink are also available.
Thus it can be used as a Matlab/Simulink's toolbox.

The AMMCLIB for NXP MPC574xP devices is organized in several sub-libraries, as
depicted in Figure 20:

Mathematical Function Library (MLIB) - it comprises basic mathematical operations
such as addition, multiplication, etc.

General Function Library (GFLIB) - it comprises basic trigonometric and general
math functions such as sine, cosine, tan, hysteresis, limit, etc.

General Digital Filters Library (GDFLIB) - it includes digital 1IR and FIR filters
designed to be used in a motor control application

General Motor Control Library (GMCLIB) - it includes standard algorithms used for
motor control such as Clarke/Park transformations, Space Vector Modulation, etc.
Advanced Motor Control Function Library (AMCLIB) - it comprises advanced
algorithms used for motor control purposes

General Motor Gontrol Library (GMCLIB)
Park/Clark Transformations F}E’ P#E
- Inversa Park-Clark FHU \“

- 3VM

- DC Bus Ripple Elimination GMCLIB F&'F&%”K m m
AYAYA)

A

General Function Library (GFLIB) SHand-Alone

General Digital Filters Library

[BDFLIS)

- Sine, Cosine, Tangent d@v%
- Inversa 5_|.1e Cosine, Tangent

GFLIB ||| GDFLIB| ' -;1__ =2

IR, FIR, Fillers
Moving Average Fillers

LL

Mathematical Library (MLIB)
- Absolute Walue

- Summation, Saturated Summation M LI B —
- Mulliplication, Division, Saturated Muliplication

- Right/Left Shifting
- Type Conversion

Figure 20 - Organization of sublibraries of AMMCLIB [AMMC]

The AMMCLIB for NXP MPC574xP devices was developed to support three major
implementations:

Fixed-point 32-bit fractional (suffix F32) or Q1.31 format: in this format, the number
are comprised between -1 and 1-23%. The minimum positive value is normalized to 2°
31 Using the format requires a scaling of number to the interval [-1;+1] beforehand.
Fixed-point 16-bit fractional (suffix F16) or Q1.15 format : in this format, the number
are comprised between -1 and 1-2"*> The minimum positive value is normalized to 2%,
Using the format requires a scaling of number to the interval [-1;+1] beforehand.
Single precision (32 bits) floating point (suffix FLT): in this format, the number are
comprised between -2128 and 228 with a minimum positive value normalized to 21?8,

21

BE électronique automobile 5° année ESPE

The MSB is the sign, the next 24 bits are the mantissa and the 7 last bits form the
exponent.

The fixed-point 32-bit fractional and fixed-point 16-bit rational functions are implemented
based on the unity model. It means that, before using blocks based on these formats, numbers
must be normalized so that their values remain in the range [-1 ; +1]. Most of the functions do
not integrate saturation function: any output that exceed this range induce an overflow
condition.

Tips: converting binary code to decimal number in Q1.31 format: evaluation by the hand
the number coded by a binary or hexadecimal in Q1.31 representation can be quite tedious. In
Matlab, the function decZhex() can be used to convert decimal number to hexadecimal
representation, while the function hex2dec() aims at converting hexadecimal to decimal
representation. Based on this two functions and on scaling transform, the conversion between
decimal and Q1.31 is possible:

= Conversion from decimal to Q1.31 format:

o if the number is positive, use the following command:
dec2hex(floor(number*23)).

o if the number is negative, the sign is indicated by the MSB while the other bits
code the shift from -1. Use the following command: dec2hex(floor((1-
number)*23%)).

= Conversion from Q1.31 format to decimal:

o if the number is positive (MSB = '0"), use the following command:
hex2dec('hexa_code")/2%L,

o if the number is negative (MSB = '1"), remove the MSB and use the following
command: hex2dec('hexa_code")/2%-1

2. Types provided by AMMCLIB

Numerous types are defined in AMMCLIB files. The basic types are summarized in the
following table. Boolean, unsigned/signed integer or floating number formats are provided.
Fixed-point 32-bit fractional type is called tFrac32, while tFrac16 is the type for fixed-pont 16
bit fractional number.

Type Name Description
typedef unsigned char tBool basic boolean type
typedef double tDouble double precision float type
typedef float tFloat single precision float type
typedef tSl6 tFraclé 16-bit signed fractional Q1.15 type
typedef tS32 tFraciz 32-bit Q1.31 type
typedef signed short tsSle signed 18-bit integer type
typedef signed long t832 signed 32-bit integer type
typedef signed long long t264 signed 64-bit integer type
typedef signed char tsa signed 8-bit integer type
typedef unsigned short tUls unsigned 16-bit integer type
typedef unsigned long £U3z unsigned 32-bit integer type
typedef unsigned long long tUE4 unsigned 64-bit integer type
typedef unsigned char tUs unsigned 8-bit integer type

22

BE électronique automobile 5° année ESPE

Numerous compound types also exist. They are detailed in part 7 of the AMMCLIB reference
document [AMMC].

3. Brief presentation of the functions

Functions of Advanced Motor Control sublibrary are not presented in this document as they
will not be used in the Automotive Electronics lab. The full list of functions is given in
chapter 4 (p 151) of [AMMC].

Read carefully the MMCLIB User's guide [AMMC] to verify the performed mathematical
operations, the input and output types and the required conditions. Any violation of these
conditions may result in bug of Simulink simulation or code compilation (best case), or in
unpredictable behavior of the embedded application (worst case).

In the following paragraphs, the list of functions in each sublibrary is given. Each function is
terminated by a suffix F16, F32 or FLT to indicate the supported format. As all the functions
support these three formats, the suffix is omitted in the next parts.

a. Math Function library (MLIB)

All these functions start with the prefix MLIB_. Details can be found between pages 531 and
650 of [AMMC].

Name Description

Abs Absolute value of input parameter

AbsSat Absolute value of input parameter with saturation on output

Add Addition of the two input parameters

AddSat Addition of the two input parameters with saturation on output

Convert_FaFb Conversion between type Fa and type Fb. The conversion functions
exist for the three supported types of the library

Div Division of the two input parameters

DivSat Division of the two input parameters with saturation on output

Mac Multiply - accumulate function

MacSat Multiply - accumulate function with saturation on output

Mnac Multiply - substract function

Msu Multiply - substract function

Mul Multiplication of the two input parameters

MulSat Multiplication of the two input parameters with saturation on output

Neg Negative value of the input parameter

NegSat Negative value of the input parameter with saturation on output

RndSat Round the input parameter

Round Round the input parameter with saturation on output

ShBi Shift to the left or right

ShBiSat Shift to the left or right with saturation on output

ShL Shift to the left

ShLSat Shift to the left with saturation on output

ShR Shift to the right

Sub Substrate the two input parameters

SubSat Substrate the two input parameters with saturation on output

VMac Vector multiply accumulate function

23

BE électronique automobile

b. General Functions library (GFLIB)
All these functions start with the prefix GFLIB_. Details can be found between pages 255 and

5% année ESPE

469 of [AMMC].

Name Description

Acos Arccosine function

Asin Arcsine function

Atan Arctangent function

AtanYX Arctangent function applied on two input arguments

AtanY XShifted

the other.

Calculate the angle of two sinusoidal signals, one shifted in phase to

ControllerPip

anti-windup

Parallel form of the Proportional-Integral controller, without integral

ControllerPipAW

anti-windup

Parallel form of the Proportional-Integral controller, with integral

ControllerPir

without integral anti-windup

Standard recurrent form of the Proportional-Integral controller,

ControllerPirAW

integral anti-windup

Standard recurrent form of the Proportional-Integral controller, with

Cos Cosine function

Hyst Calculation of a hysteresis function

IntegratorTR Discrete implementation of the integrator (sum)
Limit Test whether the input value is within the upper and lower limits
LowerLimit Test whether the input value is above the lower limit
LutlD Implementation of a one-dimensional look-up table
Lut2D Implementation of a two-dimensional look-up table
Ramp Up/down ramp with a step increment/decrement
Sign Sign of the input argument

Sin Sine function

SinCos Return Sine and Cosine functions

Sqrt Square-root function

Tan Tangent function

UpperLimit Test whether the input value is below the upper limit
VectorLimit Limit the magnitude of the input vector

c. General Digital Filters library (GDFLIB)

All these functions start with the prefix GDFLIB_. Details can be found between pages 208
and 254 of [AMMC].

Name Description

FilterFIRInit Initialization of FIR filter buffer

FilterFIR Performs a single iteration of an FIR filter
FilterlIR1Init Initialization of first order IIR filter buffer
FilterlIR1 Implements the first order IIR filter
FilterlIR2Init Initialization of second order IIR filter buffer
FilterlIR2 Implements the second order IIR filter
FilterMAInit Clears the internal filter accumulator

FilterMA Implements an exponential moving average filter

24

BE électronique automobile 5° année ESPE

d. General Motor Control library (GMCLIB)

All these functions start with the prefix GMCLIB_. Not all the functions are listed below.
More details can be found between pages 474 and 526 of [AMMC].

Name Description

Clarkinv Compute inverse Clark transform

Clark Compute Clark transform

Parkinv Compute inverse Park transform

Park Compute Park transform

SvmStd Duty-cycle ratios using the Standard Space Vector Modulation
technique

4. Using in S32DS environment

The first step is the import of AMMCLIB SDK during the creation of S32DS project. Refer to
part 1.7 of this document for SDK import.

a. Setting the implementation

By default the support of all implementations is turned off, thus the error message "Define at
least one supported implementation in SWLIBS Config.h file." is displayed during the
compilation if no implementation is selected, preventing the user application building.
Following are the macro definitions enabling or disabling the implementation support:

= SWLIBS_SUPPORT_F32 for 32-bit fixed-point implementation support selection

= SWLIBS_SUPPORT _F16 for 16-bit fixed-point implementation support selection

= SWLIBS_SUPPORT_FLT for single precision floating-point implementation support

selection

These macros are defined in the SWLIBS_Config.h file located in Common directory of the
AMMCLIB for NXP MPC574xP devices installation destination. To enable the support of
each individual implementation the relevant macro definition has to be set to
SWLIBS_STD_ON.

Moreover, the SWLIBS _DEFAULT_IMPLEMENTATION macro definition has to be setup
properly. This macro definition is not defined by default thus the error message "Define
default implementation in SWLIBS_Config.h file." is displayed during the compilation,
preventing the user application building. The SWLIBS_DEFAULT_IMPLEMENTATION
macro is defined in the SWLIBS Config.h file located in Common directory of the
AMMCLIB for NXP MPC574xP devices installation destination. The
SWLIBS DEFAULT_IMPLEMENTATION can be defined as the one of the following
supported implementations:
= SWLIBS_DEFAULT_IMPLEMENTATION_F32 for 32-bit fixed-point
implementation
= SWLIBS_DEFAULT_IMPLEMENTATION_F16 for 16-bit fixed-point
implementation
= SWLIBS DEFAULT_IMPLEMENTATION_FLT for single precision floating point
implementation

b. Calling mathematical function

After proper definition of SWLIBS DEFAULT_IMPLEMENTATION macro, the AMMCLIB
for NXP MPC574xP devices functions can be called using standard legacy API convention:

25

BE électronique automobile 5° année ESPE

'Sublibrary_name'_'Function_name'_'Format_suffix'. For example if the
SWLIBS_DEFAULT _IMPLEMENTATION macro definition IS set to
SWLIBS DEFAULT_IMPLEMENTATION_F32, the 32-bit fixed-point implementation of
sine function is invoked after the GFLIB_Sin(x) API call. The command GFLIB_Sin_F32(x)
has to be added in the C code. Moreover, the header file where the used mathematical
function is declared must be included in the C code file which uses the function. For example,
if the GFLIB_Sin_F32(x) is used, the directive #include gflib.h' must be added in the C code.

IV - References

[FRUG] | FreeMASTER Serial Communication Driver, User's Guide, Rev. 3.0, August
2016, NXP Semiconductors, www.nxp.com/docs/en/user-
guide/FMSTRSCIDRVUG.pdf

[AMMC] | Automotive Math and Motor Control Library Set for NXP MPC574xP devices, User's
Guide, Rev. 12, MPC574XPMCLUG, www.nxp.com

26

