Filtrage de l'émission conduit produite par un convertisseur AC-DC Flyback

L'objectif de ce bureau d'étude est de dimensionner le filtres CEM en entrée d'une alimentation à découpage de type Flyback, afin de limiter l'émission conduite et rendre le produit compatible avec le standard EN55022. L'étude s'appuiera sur la simulation (logiciels IC-EMC et WinSPICE), ainsi que sur la base de sélection de composants REDEXPERT, fournie par Würth Elektronik (https://www.we-online.com/redexpert/).

A l'issue de ce bureau d'étude, un rapport sera demandé, répondant aux questions par ce sujet.

I. Installation des logiciels de simulations et des librairies

Le logiciel de saisie de schématique et d'analyse des résultats, IC-EMC v2.9, est téléchargeable à l'adresse suivante : <u>http://www.ic-emc.org/download/IC-EMC-2v9.zip</u>.

Le simulateur SPICE utilisée, WinSPICE, est téléchargeable ici : <u>http://www.ic-emc.org/download/WinSpice_1.05.zip</u>.

Dézipper les deux dossiers dans un emplacement connu. Le lancement du logiciel IC-EMC se fait

en lançant l'exécutable ic_emc.exe . Pour que IC-EMC puisse lancer automatiquement l'exécution des simulations par WinSPICE, vous devez indiquer dans IC-EMC l'emplacement de l'exécutable wspice3.exe. Pour cela, sur IC-EMC, cliquez sur le menu File > Simulator > Configurations. Un écran dédié s'ouvre pour indiquer le chemin d'accès de l'exécutable de WinSPICE (.\WinSpice 1.05\ wspice3.exe).

Les modèles des composants de filtrage, proposés par Wurth Elektronik et qui seront utilisés pour ce bureau d'étude, sont fournis par plusieurs librairies (fichiers .lib) :

- Modèles condensateurs céramique WCAP-CCSA : WCAP-CSSA.lib
- Modèles condensateurs film WCAP-FTXX : WCAP-FTXX.lib
- Modèles common-mode choke CMB : WE-CMB-models.lib
- Modèles common-mode choke CMBNC : WE-CMBNC-models.lib

Ces librairies sont accessibles dans le dossier zippé modele_BE_CE_CERE.zip.

II. Cahier des charges

Type de convertisseur	AC-DC, flyback
Puissance max.	60 W
Tension d'entrée	85 – 264 Vrms, 220 Vrms nominal
Tension de sortie	12 V
Courant de sortie max.	5 A
Fréquence de hachage	200 kHz

Ondulation max. en sortie	2 %
Temps de commutation	20 ns
Courant pic en entrée	3.5 A
Condensateur de filtrage en sortie du redresseur	120 μF +/- 20 %, 400 V
Classe attendue pour les condensateurs du filtre CEM d'entrée	X2 et Y2. La capacité Cy totale est limité à 10 nF

L'alimentation à découpage sera assemblée sur un circuit imprimé FR4 deux couches d'épaisseur 1.6 mm. On suppose que le montage des condensateurs sur le circuit imprimé se fera par l'intermédiaire de piste de largeur égale à 3 mm. Dans un premier temps, l'influence du routage sera négligée.

<u>Contraintes pour le dimensionnement des filtres :</u> le nombre de composants devra être optimisé pour réduire le coût de la BOM.

Tests d'émission conduite :

L'ensemble des tests CEM seront réalisés avec l'alimentation à découpage montée à 5 cm d'un plan conducteur de référence, considérée comme la référence de masse.

<u>Limite d'émission conduite à vérifier sur l'entrée</u> : EN55022 classe B, mesure en tension sur Réseau Stabilisateur d'Impédance en Ligne (RSIL) ou LISN 50 μ H // 50 Ω . Un modèle du RSIL est fourni dans le dossier zippé modele_BE_CE_CERE.zip : LISN_model.sym. Les tensions obtenues sur les terminaux de mesure du RSIL ne doivent pas dépasser la limite notée classe B. La construction interne du modèle est donnée par le fichier LISN_model.sch.

Limite d'émission conduite définie par le standard EN55022 (à gauche) et symbole du modèle du <u>RSIL utilisé dans le bureau d'étude</u>

III. Modèle de simulation du convertisseur AC-DC

Le fichier ACDC_CE_model.sch (disponible dans le dossier zippé modele_BE_CE_CERE.zip, fourni avec le sujet de BE sur <u>www.alexandre-boyer.fr/enseignements</u>) contient un modèle

électrique équivalent du convertisseur AC-DC, dédié uniquement à la simulation de son émission conduite. Ce modèle, simplifié, reproduit l'émission de mode différentiel et de mode commun en entrée, et l'émission de mode différentiel en sortie. Le modèle intègre les condensateurs de filtrage en sortie du redresseur et en sortie du convertisseur, mais aucun autre élément de filtrage CEM. La

figure ci-dessous donne une image du modèle électrique équivalent. Les terminaux (symbole [[]) Vphase et Vneutre sont respectivement, et Ref_Plane la connexion vers le plan de référence de masse. Les sources équivalentes de bruit de mode différentiel et de mode commun sont ajustable via des paramètres (commande .Param). Par défaut, le modèle est réglé pour simuler l'émission conduite du convertisseur alimenté sous 220 Vac et un courant maximal en entrée.

IV.Questions

L'objectif des questions ci-dessous est de vous guider dans l'analyse de l'émission conduite produite par le modèle du convertisseur AC-DC, dans le dimensionnement des filtres CEM et la modélisation des composants de filtrage. Ces différentes questions vous aideront à remplir le rapport de dimensionnement du filtre.

1. A partir du modèle ACDC_CE_model.sch, ajoutez le modèle du RSIL (LISN_model.sym) pour constituer le modèle de simulation de l'émission conduite en entrée du convertisseur AC-DC. Où et comment doit-on connecter les différents terminaux du modèle du RSIL ?

Sauvegardez ce nouveau modèle sous un autre nom que ACDC_CE_model.sch.

2. A partir de votre modèle, simulez le niveau d'émission conduite en entrée du convertisseur AC-DC.

On utilisera pour cela une simulation transitoire, avec un temps total de 100 µs et un pas de 1 ns. Pour insérer une ligne d'analyse, cliquez dans le menu Insert > Insert Analysis Line. Sur IC-EMC, la

mesure des tensions se fait à l'aide des « probes » suivantes, disponibles dans la palette de symbole :

- 🖉 : mesure de la tension d'un nœud par rapport à la masse
- Imesure de la tension différentielle entre deux nœuds
- 💯 : mesure de la tension de mode commun entre deux nœuds

Lancez la simulation WinSPICE en cliquant sur le bouton hans la barre d'outils. A l'issue de la simulation, vous pouvez fermer WinSPICE. Sur IC-EMC, cliquez sur le bouton d'ans la barre d'outils pour tracer les spectres des tensions simulées et les comparer aux limites standards.

3. Pourquoi est-il plus avantageux pour la conception du filtre de distinguer les contributions de type mode commun et mode différentiel de l'émission conduite ?

4. Etablir les niveaux d'atténuation requis par le filtre CEM. On distinguera l'atténuation à apporter en mode commun et en mode différentiel.

5. Conception initiale du filtre CEM

a. Proposez des valeurs pour les composants du filtre CEM d'entrée dans sa version minimale. A partir de REDEXPERT, proposez des références de composants. Justifiez leur choix. Indiquez l'ordre du filtre proposé, les fréquences visées, les atténuations attendues. <u>Sélectionnez</u> seulement des composants dont les modèles sont disponibles dans les librairies fournies !

b. Proposez un modèle de simulation l'atténuation ou la perte par insertion en mode commun et en mode différentiel apportée par ce filtre lorsqu'il est terminé par des charges 50 Ω.

Le calcul de la perte par insertion se fera en utilisant une simulation petit signal .AC appliquée sur le filtre seul. Placez une source d'excitation sur un terminal du filtre (avec l'impédance de sortie requise) et la charge terminale sur l'autre terminal du filtre.

Configurez une simulation AC : l'analyse à insérer à l'aide du menu Insert > Insert Analysis Line est une simulation AC, avec balayage fréquentielle logarithmique de 100 points/décadre, entre 1 kHz et 1 GHz (exemple : .AC DEC 100 1k 1G).

Le tracé de l'atténuation se fait par l'intermédiaire de l'outil EMC > AC Analysis, disponible à l'aide du bouton 🔍 dans la barre d'outils. Les paramètres pourront être tracés en dB.

c. Simulez l'atténuation de mode commun et de mode différentiel de votre filtre. Est-il suffisant pour respecter la limite EN55022 classe B? Les atténuations simulées sont-elles conformes au dimensionnement de la question 5.a. Qu'est-ce qui explique les différences ?

<u>6. Simulation de la réduction de l'émission conduite en entrée avec le filtre CEM d'entrée dans sa</u> version initiale.

Emission conduite

a. Intégrez le modèle du filtre CEM d'entrée au modèle développé à la question 2, et simulez l'émission conduite en entrée.

b. L'atténuation apportée par le filtre est-elle en conformité avec les pertes par insertion précédemment calculées ? Pourquoi ?

c. Cette première version de filtre permet-elle d'être en conformité avec le standard EN55022 ?

7. Amélioration de la version initiale du filtre (si nécessaire)

a. Proposez différentes pistes d'amélioration du filtre pour respecter la limite d'émission conduite.

b. Testez en simulation ce(s) piste(s) et proposez une version de filtre qui respecte la limite EN55022.

8. Le circuit de commande PWM permet de régler les temps de transition via un système de *slew rate* réglable. Par défaut, celui-ci avait été réglé de sorte à assurer un temps de transition de l'ordre de 20 ns. Une alternative acceptable du point de vue des pertes par commutation serait de régler le temps de transition autour de 30 ns.

a. Modifiez le schéma électrique du convertisseur sans filtre d'entrée et simulez le niveau d'émission conduite en entrée avec ce nouveau temps de transition (paramètre Tr du modèle).

b. Evaluez l'amélioration apportée sur les niveaux d'atténuation requis par les filtres CEM, en entrée et en sortie.

c. Est-il possible d'éliminer des éléments de filtrage ? Si oui, proposez une nouvelle version de filtres CEM avec ce changement de temps de transition.

9. Dans une précédente version d'alimentation à découpage, l'ensemble des condensateurs étaient connectés par l'intermédiaire de pistes de 1 cm de long. A partir du modèle du convertisseur et de son filtre, on souhaite analyser si le routage a une influence et quelle règle de placement-routage des condensateurs adopter.

a. A l'aide des informations sur routage données par l'énoncé et l'outil Interconnect Parameters (menu Tools), déterminez les paramètres électriques R, L, C d'une piste de connexion d'un condensateur. A partir des valeurs calculées, entre les effets résistifs, inductifs et capacitifs, le(s)quel(s) pourraient avoir une influence majeure sur l'émission conduite ?

b. Proposez une modification simple du modèle de simulation du convertisseur et de son filtre pour simuler l'effet du placement-routage des condensateurs.

c. Quelle est l'influence du placement - routage des condensateurs sur l'émission conduite ?

d. Proposez une règle de placement-routage des condensateurs permettant de garantir une bonne efficacité du filtre d'émission conduite.